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ABSTRACT    
In the present work, heat transfer and entropy generation due to 
the natural convection of Newtonian and non-Newtonian fluids in 
two types of shear thinning and shear thickening inside a right-
triangular cavity under the effect of uniform and non-uniform 
magnetic field by multiple relaxation time lattice Boltzmann 
methods have been investigated. The aspect ratio of the cavity is 
variable and the magnetic field is applied in two different angles" 
is replaced by" the magnetic field is applied from left to right and 
perpendicular to the gravity of the cavity". The present work is 
validated with previous references and results presented in the 
form of tables, diagrams and streamlines, isothermal lines, and 
entropy lines. The simulation is done by writing the computer code 
in the Fortran language. The effect of Rayleigh number, aspect 
ratio, power-law index of fluid, Hartmann number and angle, and 
type of magnetic field applied on fluid flow and heat transfer 
characteristics has been evaluated. The results show that in all 
cases, increasing the Hartmann number and fluid power-law index 
leads to a decrease in the strength of flow, heat transfer rate, and 
entropy generated and the percentage of this effect varies 
depending on the number of other variables. By applying a 
magnetic field non-uniformly, the flow strength and heat transfer 
rate can be increased to about 45% and 20%, respectively. At 
higher Hartmann numbers, the effect of changing the type of 
magnetic field applied is more pronounced. The angle of the 
magnetic field applied is a determinant parameter on the amount 
of heat transfer so that the average Nusselt number in the 
horizontal mode is on average 15% less than in the vertical mode. 
Increasing of power-law index dramatically reduces the magnetic 
field effect so that it is ineffective for the shear thickening fluid, the 
type of magnetic field applied. By increasing the Rayleigh number 
and the aspect ratio of the cavity, the flow strength and the rate of 
heat transfer increase and the effect of the magnetic field becomes 
more pronounced. This study can be useful in the optimal design of 
industrial and engineering equipment, including electronic coolers. 
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1. Introduction 

The study of electrically conductive fluid under 
the effect of the magnetic field has received 
much attention due to its wide utilization in 
various applications such as the polymer 
industry, refining of molten metals, cooling of 
electronic equipment and many other cases [1-
3]. In the recent decade, the interest in studying 
the behavior of heat transfer processes in closed 
cavities under the influence of a magnetic field 
is increasing. The common denominator of all 
these studies is that the fluid experiences 
Lorentz force. This force affects the buoyancy 
flow and heat transfer field [4-6]. Toghraei [7] 
investigated the effect of a magnetic field on the 
flow characteristics of nanofluid mixed 
convection within the trapezoidal chamber at a 
different angle of inclination by the finite 
volume method using the simpler algorithm. 
Results showed that the heat transfer rate 
decreases with increasing Hartmann number and 
the average Nusselt number is a function of the 
Reynolds number and the angle of inclination of 
the chamber. The natural convection of the non-
Newtonian fluid under the effect of a uniform 
magnetic field in a square-shaped chamber was 
studied by Kefayati and Tang [8]. For 
electrically conductive fluids, the Lorentz force 
due to the application of a magnetic field 
reduces the velocity of the fluid. This 
phenomenon has led to the use of magnetic 
fields to control the flow and rate of heat 
transfer in the industry. The directions and 
strength of the magnetic field play a very 
important role in the behavior of the current [9]. 
The unwanted magnetic field is not always 
uniform. Sometimes it is necessary to apply a 
non-uniform magnetic field in order to achieve a 
specific goal. For this reason, it is important to 
study the heat transfer flows affected by a non-
uniform magnetic field. Most studies have 
examined the study of convection currents under 
a uniform magnetic field. Nemati et al. [10] 
investigated the nixed convection within a 
porous chamber by moving the walls in 
different directions due to uniform/periodic 
magnetic field and heat generation/ absorption 
by the lattice Boltzmann method. The results 
showed that by periodically applying the 
magnetic field compared to the uniform state, 
the flow strength and the average Nusselt 

number are higher and the highest heat transfer 
rate was observed for the two oscillation waves. 

The entropy generated according to the 
second law of thermodynamics can be a 
measure of equipment efficiency. For this 
reason, in recent years, in addition to studying 
heat transfer, researchers have also been 
evaluated the amount of entropy produced [11]. 
Entropy generation reduces thermodynamic 
efficiency. Entropy analysis shows in which 
parts of a physical model or system the energy 
dissipation is greater [12]. Since the production 
of entropy is a criterion for the loss of 
workability in equipment, it is necessary to 
determine the issue of increasing the efficiency 
of devices [13-15]. 

The fluids used in real applications have 
Newtonian and non-Newtonian properties, so it 
is important to study the flow characteristics 
and heat transfer properties created by non-
Newtonian fluids [16]. Unlike Newtonian 
fluids, in non-Newtonian fluids, a constant 
coefficient such as viscosity does not make 
sense to describe the state of shear stress [17]. 
Most fluids used in the mechanical and 
chemical industries are non-Newtonian [18]. 
Non-Newtonian fluid streams have been used 
in many natural and industrial applications, 
including industrial product lines, and polymer 
processes, and in many biological applications 
such as blood flow in the body [19-21]. 

Natural convection is one of the heat 
transfer processes and occurs when a 
volumetric force is applied to it by creating a 
density difference due to the temperature 
difference in the fluid [22]. Heat transfer in 
closed cavities has a variety of applications in 
industry, including applications in electric 
machines, microelectronic devices and solar 
collectors. Therefore in designing all these 
types of equipment, simulation of heat transfer 
in the cavity with different shapes can be 
useful and necessary [23]. 

Today, the lattice Boltzmann method is a 
numerical method based on the theory of 
molecular motion that is widely used in 
simulating transfer phenomena. Features of this 
method include simple application of boundary 
conditions, parallelism and application in 
solving complex problems such as combustion 
simulation [24-26]. The multi-relaxation time 
lattice Boltzmann method (MRT-LBM) has 



 Mohammad Nemati  et al./ Energy Equip. Sys. / Vol. 10/No. 4/Dec. 2022 329 

more stability and degree of freedom than the 
Single relaxation Time (SRT-LBM).  

Rahman et al. [27] investigated the natural 
convection of a non-Newtonian fluid in a 
rectangular cavity in the presence of a uniform 
magnetic field by the multi relaxation time lattice 
Boltzmann method. The results showed that the 
use of MRT-LBM has a high accuracy in heat 
transfer simulation and the results have an 
acceptable agreement with other methods. They 
also indicated that the average Nusselt number 
and the entropy generated obviously depend on 
the Rayleigh number, the Hartmann number, and 
the power-law index. Jahanbakhshi et al. [28] 
investigated the heat transfer of a non-Newtonian 
fluid with a power-law model under the effect of 
a uniform magnetic field with the simple 
algorithm and the finite volume method inside 
the L-shaped cavity. Afsana et al. [29] evaluated 
the non-Newtonian fluid natural convection with 
a power-law model inside a square cavity with 
corrugated walls in the presence of a uniform 
magnetic field by the finite volume method. The 
results showed that the amount of heat transfer is 
clearly dependent on Rayleigh number, 
Hartmann number and power index and the 
average Nusselt number decreases with 
increasing power-law index. Also, the increment 
of Hartmann number results in 60% attenuation 
of total entropy for shear-thinning fluid and 9% 
diminution for the shear-thickening case. In 
addition, the effect of increasing the Hartmann 
number on reducing the total entropy generation 
for the shear thinning fluid is greater than shear 
thickening fluid. Zhang et al. [30] investigated 
the heat transfer and entropy generation due to 
the natural convection of Newtonian and non-
Newtonian fluids in an L-shaped chamber 
numerically under the influence of a magnetic 
field. The results showed that the average Nusselt 
number and total entropy generation increased 
with increasing Rayleigh number and decreased 
with increasing power-law index and Hartmann 
number. Rahimi et al. [31] used the lattice 
Boltzmann method to investigate heat transfer 
and entropy generation of nanofluid in an H-
shaped chamber. The results showed that the total 
entropy and average Nusselt number are a 
function of Rayleigh number and nanoparticle 
volume fraction. 

According to previous studies, it has been 
seen that the heat transfer and entropy 

generated due to natural convection inside the 
triangular cavity under the effect of uniform 
and non-uniform magnetic fields (specific type 
of applied) have not been studied so far. A 
feature of the present work is the application of 
the multi relaxation time lattice Boltzmann 
method (MRT-LBM) to solve this study which 
has not been done before. 

 
List of symbols 

AR Aspect ratio 

B Strength of magnetic field 

Be Bejan number 
c Discrete particle speeds for D2Q9 

e Discrete particle speeds for D2Q5 
f Functions of density distribution 

feq Equilibrium density distribution functions 
F External force 
g Acceleration due to gravity 

h Internal energy distribution functions 

heq 
Equilibrium internal energy distribution 
functions 

H Height of the cavity 

Ha Hartmann number 
k Coefficient of thermal conductivity 
L Length of the cavity 

n Index of power-law 
Nu Nusselt number 

Pr Prandtl number 
Ra Rayleigh number 
T Temperature 

S Entropy generation 
u (u,v) Velocities 

x (x,y) Cartesian coordinates 
α Thermal diffusivity 
λ Angle of magnetic field applied 

μ Dynamic viscosity 
υ Kinematic viscosity 
ψ Strem function 
ω Weighting factor 
θ Dimensionless temperature 

2. Description of the present problem 

In the present work, the heat transfer and 
entropy generated due to the natural convection 
of Newtonian and non-Newtonian power-law 
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fluids (shear thinning and shear thickening) are 
inside a triangular cavity with variable aspect 
ratio investigated. The diagonal wall of the 
cavity is at a constant cold temperature while 
the vertical wall has a sinusoidal temperature 
distribution. Also, the horizontal wall is 
considered adiabatic. Magnetic field with 
different powers is applied in two types of 
uniform and non-uniform (In four different 
forms) in two different angles. The schematic 
of this problem is shown in Fig. 1. Fig. 2 
shows an example of the computational 
network used in the present study. Table 1 
presents the studied parameters in this along 
with the corresponding values. . All flow 
boundaries are impenetrable and there is no 
slippage on the surfaces. The fluid flow is 
steady and laminar and the Boussinesq 
approximation is used. Viscous loss and 
radiative heat transfer are negligible. 

3. Governing equations 

Assuming that the flow fluid is incompressible 
and using the Boussinesq approximation, the 
equations of mass, momentum and energy are 
presented in Eqs. (1) to (4) [30]. Stream function 
is defined as relation (5). The dynamic viscosity 
in the power-law model is defined as Eq. (6) [27]. 
Total generated entropy is the sum of the 
generated entropies due to heat transfer, fluid 
friction and magnetic field that it is expressed 
according to relations (7) to (10). The power-law 
index of the fluid is indicated by n and in the case 
of a Newtonian fluid is n =1, n <1 indicates shear 
thinning fluid and n> 1 indicates shear thickening 
fluid. By using dimensionless parameters in 
relation (11), the governing equations are written 
as relations (12) to (21). 

  

Fig. 1. Geometry of the present problem 

 

 

Fig. 2. Representation of the grid distribution 
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Table 1. Dimensionless parameters used in the present work 

Dimensionless parameters Values 
Hartmann number 0, 15, 30 and 45 

Type of magnetic field applied TMFA1, TMFA2, TMFA3 and TMF4 
Angle of magnetic field applied 0 and 90° 

Rayleigh number 103, 104 and 105 

Aspect ratio of cavity ( AR=L H ) 0.5, 1 and 2 
Power-law index 0.75, 1.0 and 1.25 
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According to references [32-34] in the 
present work,

1η  and
2η  is considered to be 10-4.  

The total entropy generation value is on 
averaged according to relation (22). The Bejan 
number (Be) which represents the ratio of the 
entropy generation due to heat transfer to the 
total entropy generation is calculated according 
to relation (23). Be>0.5 indicates the 
dominance of irreversibility due to heat 
transfer to other irreversibility, including 
friction and magnetic field. The average 
Nusselt number (Nu) which is a measure of 
heat transfer on the hot wall of a cavity is 
defined as Eq. (24). 
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°
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The non-Newtonian fluid studied in the 
present work follows the power-law model. In 
this model, the kinematic viscosity is a 
function of the shear rate that is defined as a 
relation (25) and (26). The kinematic viscosity 
of a non-Newtonian fluid is expressed 
according to equation (27).  
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4. Numerical method 

In the present work, the lattice Boltzmann 
method with multiple relaxation time (MRT) in 
the collision stage has been used. The 
advantage of this method over the single 
relaxation time (SRT) is higher accuracy and 
stability. For the flow field, the D2Q9 lattice 
arrangement is used as shown in Fig. 3. The 
lattice Boltzmann equation is presented in Eq. 
(28). 
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In the above relation, f is the distribution 
function,   is the collision matrix and Fi 
denotes components the body forces. 
Equilibrium distribution functions is calculated 
according to Eq.(29). In the D2Q9 lattice 
arrangement model, the weighting factor and 
discrete velocity are expressed according to 
Eqs. (30) and (31), respectively. 
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After performing the collision process in the 
momentum space instead of the velocity space, 
the equation yields to: 
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In the above equation M is the 
transformation matrix that transfers the vector 
of the distribution function to the momentum 
space. For D2Q9 model, M is according to 
relation (33). 
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The diagonal matrix S is the collision 
matrix in a moment space that is presented in 
relation (34). 

1 1

1 1
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In the above relation: 
1τ =3υ( ,t)+0.5.x  Eqs. 

(35) and (36) present the moment (m) and 
equilibrium moment ( eqm ) vectors. In relation 

(28), F represents the total volumetric forces 
and is written as relation (37) [27]. 
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The macroscopic fluid density (ρ) and 
velocity u are obtained from the moments of 
the distribution function given below: 

8

i
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8
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Like the flow field, the MRT-LBM and the 
D2Q5 lattice arrangement are used to solve the 
temperature field, the equation of which is 
presented in Eqs. (39) to (41) [27,35]. A 
schematic of this type of lattice arrangement is 
shown in Fig. 3. 
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In relation (39), h is the distribution function 
of the temperature field ( T
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is the microscopic velocity of the particles in the 
D2Q5 lattice arrangement presented in Eq. (42). 
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The N and Z collision matrices are in the 
form of relations (43) and (44). 
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The equilibrium distribution function and 
the macroscopic quantities related to the 
temperature field are calculated using Eqs. (46) 
and (47), respectively. 

eq h

i i ih =ω T[1+3( . )]c u  (46) 

8

i

i=0

T= h  (47) 

Which 
h h

0 1-4ω 0,ω =0.25  is for the D2Q5 model. 
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are at a constant hot and cold
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Fig. 3. Lattice arrangement 
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temperature, respectively. While the top 
horizontal wall considered adiabatic. 
Mathematical relations of the boundary 
conditions of the present problem are in the 
form of relation (48). 

 U=V=0, θ=1, 

 U=V=0, θ=0, 

θ
 U=V=0, =0

Y





Hot wall :

Cold wall :

Adiabatic wall :

 
(48) 

It is necessary to mention that in this 
simulation, the bounce-back model is used to 
the simulation of the boundary conditions on 
smooth and diagonal walls. Details and related 
relationships are listed in references such as 
[36-38]. 

Choosing the right algorithm to solve the 
problem and achieve the correct results is very 
important. First, the initial parameters such as 
Prandtl number, Rayleigh number and initial 
distribution functions are considered. Then, 
according to Eqs. (29) and (46), the values of 
equilibrium distribution functions in fluid 
nodes are calculated. In the collision step, 
relations (28) and (39) are satisfied and then 
the new values of the distribution functions 
(after the collision) are calculated. Then the 
streaming step is performed when the values of 
the distribution functions of all nodes in their 
direction are poured on adjacent nodes. After 
applying the boundary conditions, the values of 
density, velocity and temperature in the whole 
network are calculated according to Eqs. (38) 
and (47). Finally, the shear rate is calculated in 
all nodes and if the results converge, the 
program ends, otherwise, the described steps 
will be repeated. 

Convergence relationship for completing 
calculations in order to save time and cost and 
to have the necessary accuracy in relation (49) 
provided.  

1 2

1 2

r r
b+1 b

i=1 j=1 -8

r r
b

i=1 j=1

-

Error 10

 

 






 (49) 

In above relation, b and b+1 represent the 
old and new time phases and r1 and r2 represent 
the number of nodes in the x and y directions, 
respectively. The parameter   stands for U, V 
or θ. 

5. Validations and grid independence study 

One of the requirements of numerical simulation 
is validation with previous reliable studies. For 
this purpose, the present work is the comparison 
with several references and its results are 
presented. In order to validate the written code in 
calculating the entropy generated, the present 
work is compared with the reference [39] in Fig. 
4. Also, the correctness of the computer program 
in simulating the heat transfer of non-Newtonian 
fluid with the power-law model in the presence 
of magnetic field according to Fig. 5 (comparison 
of the present work with the reference [36]) is 
shown. In addition, a comparison of the average 
Nusselt number on the hot wall of the cavity 
between the present work and the reference [40] 
and [41] for natural convection of non-Netonian 
fluid is presented in Table 2. 

The very small difference between the 
results obtained from the present code and the 
results of previous studies indicates the 
correctness of the written program in Fortran 
language. 

To obtain a suitable lattice that leads to the 
independence of the results from the selected 
network, the lattice with dimensions of 40 × 
80, 60 × 120, 80 × 160, 100 × 200 and 120 × 
240 was selected.  According to Table 3, it can 
be seen that for a network with dimensions 
larger than 100 × 200, no significant change is 
seen in the results and the accuracy of the 
results can be ensured. 
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 Be ST SF 

Present study 

  
 

References [39] 

   

Fig. 4. Comparison between the present study and reference [39] 

 Present study References [36] 

Ha=0 

  

Ha=50 

  

Fig. 5. Comparison between the present study and reference [36] 

Table 2. Comparison between present study and reference [40] and [41] 

 Ra=104 Ra=105 
 Reference [40] Reference [41] Present study Reference [40] Reference [41] Present study 

n=0.7 1.03 1.04 1.04 1.3 1.32 1.31 
n=0.9 1.01 1.02 1.02 1.09 1.1 1.1 
n=1.0 1.0 1.0 1.0 1.05 1.05 1.05 
n=1.1 0.99 0.98 0.975 0.93 0.92 0.92 
n=1.3 0.95 0.94 0.94 0.86 0.85 0.85 

Table 3. Average Nusselt number for different mesh size at AR=2, λ=90°, Ha=15, TMFA1 and Ra=105 

 Mesh size 40×80 60×120 80×160 100×200 120×240 

n=0.75 

Nu 5.331 7.535 7.715 7.831 7.897 
Error - 3.82 2.38 1.51 0.85 

max  0.305 0.315 0.345 0.357 0.368 

n=1.25 
Nu 5.099 5.208 5.287 5.351 5.2351 

Error - 2.08 1.51 0.012 0 

max  0.096 0.099 0.105 0.105 0.105 
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6. Results and discussion 

In this section, the results of simulations are 
presented and analyzed for variations in 
Rayleigh number, Hartmann number, power-
law index, the aspect ratio of cavity, angle and 
type of magnetic field applied (Table 1). The 
results are presented in the form of tables, 
diagrams and contours of streamlines, 
isothermal lines, and constant entropy lines. 
Since the non-Newtonian fluids used in 
industry have large Prandtl numbers, in the 
present work, Pr=100 has been chosen. 

6.1. Effect of magnetic field 

Figure 6 shows contours of streamlines, 
isotherms, and local entropy generation due to 
heat transfer at different values of the 
Hartmann number for shear thickening and 
shear thinning fluids. According to Fig. 6 (a), 
in all cases, the fluid heats up near the hot 
vertical wall and moves upwards due to the 
decrease in density and then its density 
increases in contact with the cold wall, which 
leads to the formation of a clockwise vortex in 
the cavity. When the fluid has a shear 
thickening behavior, due to the high viscosity 
of the fluid, a vortex with less strength is 
formed in the right corner of the cavity. 
Increasing the Hartmann number causes the 
center of the vortices to shift upwards because 
the magnetic field acts against gravity. 
According to Fig. 6 (b) it can be seen that the 
scattering of isotherms for the shear thickening 
fluid is much less compared to the shear 
thinning fluid and the lines are densely 
adjacent to the hot wall and show that thermal 
conductivity is the predominant heat transfer 
phenomenon. Because according to Eq. (27), 
increasing the power-law index increases the 
viscosity of the fluid and reduces the effects of 
convection. Increasing the Hartmann number 
in both non-Newtonian fluid behaviors reduces 
the curvature and dispersion of the isotherms. 
Because according to Eqs. (2) and (3), 
increasing the Hartmann number leads to an 
increase in Lorentz force in the opposite 
direction of gravity force that reduces the 
velocity of the fluid. Due to the greater 

convection effects for shear thinning fluid 
compared to the shear thickening fluid, the 
effect of the magnetic field for the shear 
thinning fluid is more obvious. According to 
Fig. 6 (c), it can be seen that the constant 
entropy lines due to heat transfer behave 
similarly to isotherms so that the generated 
entropy decreases with increasing Hartmann 
number and power-law index. Due to the 
higher temperature and velocity gradient 
adjacent to the hot wall, the highest entropy 
generated is observed in this area. The 
horizontal velocity for the different values of 
the power-law index and the Hartmann number 
is shown in Fig. 7. It can be seen that the 
velocity of the fluid decreases with increasing 
power-law index and Hartmann number. The 
effect of increasing the strength of the 
magnetic field on decreasing the velocity 
decreases with increasing the power-law index. 
Because increasing the power-law index causes 
the heat transfer mechanism to be inclined 
towards conduction. According to Table 4, the 
strength of flow in all cases decreases with 
increasing Hartmann number. Because 
increasing the Lorentz force reduces the 
velocity of the flow. Also, it can be seen that 
when the magnetic field is applied horizontally, 
the strength of flow decreases more because 
according to Eqs. (2) and (3), when the 
magnetic field is applied horizontally, the 
Lorentz force acts against gravity. By applying 
the magnetic field horizontally, the strength of 
flow was reduced by an average of 20%. As 
the power-law index increases, the strength of 
flow decreases and the effect of the magnetic 
field decreases. 
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Fig. 6. Contours of (a) streamlines, (b) isotherms and (c) entropy generation due to heat transfer for various 
Hartmann numbers in shear thickening and shear thinning fluid at AR=2, Ra=105, λ=90° and TMFA1 

 

Fig. 7. Horizontal velocity in X=0.25 for variations of rheological behavior of fluid and Hartmann number at 
AR=2, Ra=105, λ=90° and TMFA1 
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Ha=30 
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The average Nusselt number and the 
volumetric total entropy generation for 
different values of the Hartmann numbers, the 
fluid power-law index, and the angle of the 
magnetic field applied are shown in Fig. 8. It 
can be seen that in all values of Hartmann 
number, the maximum and minimum values of 
the average Nusselt number are related to shear 
thinning and shear thickening fluids, 
respectively. Increasing the power-law index 
according to Eq. (27) leads to increasing the 
viscosity of the fluid and as a result the power 
of fluid and velocity of the fluid decreases 
according to Fig. 6 (b), because the thermal 
conductivity prevails, the rate of heat transfer 
become decreases. The percentage decrease of 
the average Nusselt number is higher with the 
increase of the Hartmann number in the case 
where the magnetic field is horizontally 
applied. On average, increasing the Hartmann 
number from zero to 45 leads to a 35, 28, and 
17 percent decrease in the average Nusselt 
number for shear thinning, Newtonian, and 
shear thickening fluids, respectively. The trend 
of total entropy generation variations is similar 
to the average Nusselt number changes. This 
shows that the largest share of the total entropy 
belongs to the entropy generated due to heat 
transfer. Because although Eq. (21) shows that 
increasing the Hartmann number leads to an 
increase in entropy, it should also be noted that 
increasing the Hartmann number leads to a 
decrease in velocity, which leads to a small 
effect of the magnetic field in total entropy 
generation. Increasing the Hartmann number 
and power-law index reduces the total entropy 
due to reduced heat transfer. 

The variations of Bejan number are 
presented in Fig. 9. The Bejan number shows 
the ratio of the entropy generated due to the 
heat transfer to the total entropy generation. It 
can be seen that the Bejan number is almost 
constant for the shear-thickening fluid. 

Because the effects of convection and 
variations in heat transfer are very small and 
the magnetic field has little effect. In the case 
of a shear thinning and Newtonian fluids, the 
Bejan number increases with increasing 
Hartmann number. It is true that increasing the 
Hartmann number reduces the entropy 
generated due to heat transfer (Fig. 8), but at 
the same time the entropy generation due to 
fluid friction decreases, which is more evident 
in the total entropy generated. Variations of the 
Bejan number become more obvious for shear-
thinning fluid as the Hartmann number 
increases. Fig. 10 shows the contours of the 
streamlines, isotherms and total entropy 
generation in terms of the Hartmann number 
and the type of magnetic field applied. As can 
be seen, the change in the type of magnetic 
field applied becomes more apparent with the 
increasing Hartmann number. Applying a 
magnetic field as TMFA4 reduces the average 
Lorentz force applied to the fluid flow, which 
increases the strength and velocity of the fluid 
inside the cavity. Due to the fact that the 
magnetic field is applied against gravity, by 
applying the magnetic field uniformly, the 
center of the formed vortex tends upwards, 
while by applying a non-uniform magnetic 
field, the center of the vortex tends to the 
bottom of the cavity. The curvature and 
scattering of isotherms is greater in the non-
uniform state of the magnetic field than in the 
uniform state. The total volumetric entropy 
generation is the same as heat transfer. It can 
also be seen from Fig. 10 that as the Hartmann 
number increases due to the decrease in 
gradients of temperature and velocity the total 
entropy generation decreases as shown in the 
Figure. According to Table 5, it can be seen 
that the strength of flow from TMFA1 to 
TMFA4 increases continuously, which is more 
tangible with increasing Hartmann numbers. 

 

Table 4. Maximum values of streamlines (
max ) at AR=2, Ra=105, λ=90° and TMFA1 

 λ=0 λ=90° 

 Ha=0 Ha=15 Ha=30 Ha=45 Ha=0 Ha=15 Ha=30 Ha=45 
n=0.75 0.455 0.374 0.285 0.235 0.455 0.345 0.232 0.165 
n=1.0 0.251 0.208 0.165 0.155 0.251 0.195 0.144 0.125 

n=1.25 0.115 0.109 0.101 0.95 0.115 0.105 0.093 0.085 
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S Nu  

  

(a) 

  

(b) 

Fig. 8. Average Nusselet number and total entropy generation for variations of Hartmann number at AR=2, 
Ra=105 and TMFA1 (a) λ=0 and (b) λ=90° 

 

Fig. 9. Bejan number for variations of Hartmann number at AR=2, Ra=105, λ=90° and TMFA1 
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 Ha=15 Ha=45 

(a) 

  

(b) 

  

(c) 

  

Fig. 10. Contours of (a) streamlines, (b) isotherms and (c) total entropy generation for various Hartmann 
numbers at AR=2, n=1.0, λ=90°, TMFA1 (Continuous lines) and TMFA4 (Discontinuous lines) 

Table 5. Maximum values of streamlines (
max ) at AR=1, Ra=105, λ=0 and n=1.0 

 Ha=0 Ha=15 Ha=30 Ha=45 
TMFA1 0.185 0.155 0.124 0.095 
TMFA2 0.185 0.164 0.135 0.115 
TMFA3 0.185 0.171 0.144 0.128 
TMFA4 0.185 0.175 0.165 0.142 

 

According to Fig. 11, the applied magnetic 
field uniformly results in the lowest velocity of 
the fluid flow. The non-uniform application of 
a magnetic field increases the velocity of the 
fluid, especially near walls, which increases the 
velocity and temperature gradients. Fig. 12 
shows the average Nusselt number and the 
total entropy generation in terms of variations 
of the Hartmann number and the type of 
magnetic field applied. By changing the type of 
magnetic field applied from TMFA1 to 
TMFA4, the average Nusselt number and flow 
strength can be increased up to 25% and 50%, 
respectively. Increasing the Hartmann number 
from zero to 45 decreases the average Nusselt 
number by 25, 19, 14, and 6 percent for 
TMFA1 to TMFA4, respectively. The trend of 
variations in total entropy generation is similar 
to the average Nusselt number so the least 
changes has be seen for TMFA4. Fig. 13 shows 

the simultaneous effect of the Hartmann and 
Rayleigh number on contours of streamlines, 
isotherms and total entropy generation. It is 
observed that by decreasing the Rayleigh 
number, the strength of fluid flow is reduced 
by up to 70%. Because by reducing the 
Rayleigh number, the effect of buoyancy 
forces is greatly reduced. Due to the isotherms, 
by decreasing the Rayleigh number, the 
curvature of the lines is reduced, which 
indicates the predominance of thermal 
conductivity. As the Rayleigh number 
decreases, entropy lines also behave like 
isotherms, indicating a decrease in entropy 
generation. Also, it can be seen that the effect 
of the Hartmann number decreases with the 
decrease of the Rayleigh number. The effect of 
the direction and strength of the magnetic field 
on the temperature profile for low Rayleigh 
numbers is negligible because in this state 
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thermal conductivity is dominant and the 
effects of convection are very small as shows 
in Fig. 14. Also, it can be seen in Rayleigh 
number 105, the temperature is higher when the 
magnetic field is vertically applied, that 
indicating the heat transfer is higher. 
According to Fig. 15, it can be seen that in all 
Rayleigh numbers, increasing the Hartmann 
number decreases the average Nusselt number 
and the entropy generated, which this effect 
increases with increasing Rayleigh number. 
Applying a magnetic field in the form of 
horizontal for the Rayleigh numbers 103, 104 
and 105 leads to a decrease of 9, 13 and 38%, 
while for the vertical type it is 6, 10 and 23%. 

It can be seen that the amount of entropy 
generation and the Nusselt number are a 
function of the Rayleigh number. 

The Bejan number for variations of the 
Hartmann and Rayleigh number is tabulated 
in Table 6. It can be seen that the inverse 
relationship is established between the Bejan 
number and the Rayleigh numbers. Increasing 
the Rayleigh number increases the heat 
transfer and the entropy generated due to fluid 
friction due to the increased effects of fluid 
convection. At low Rayleigh numbers, the 
largest share of total entropy is related to heat 
transfer, while at high Rayleigh number this 
share decreases. 

 

Fig. 11. Vertical velocity in Y=0.375 for variations of Hartmann number and TMFA at AR=1, Ra=105, λ=0 and 
n=1.0 

S Nu 

  

Fig. 12. Average Nusselet number and total entropy generation for variations of Hartmann number and TMFA at 
AR=1, Ra=105, λ=0 and n=1.0 
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6.2. Effect of Rayleigh number 

Figure 16 shows the isotherms for the shear 
thinning and shear thickening fluid for 
different values of the Rayleigh numbers. It 
can be seen that at low Rayleigh numbers, the 
lines are more parallel to the hot wall that 
indicating the predominance of thermal 

conductivity. The scattering and curvature of 
the lines increase with increasing Rayleigh 
numbers that indicating greater convection 
effects. Also, it can be seen that the effect of 
increasing the power-law index on reducing the 
dispersal of the lines increases with increasing 
the Rayleigh number. 

 

 (a) (b) (c) 

Ra=103 

   

 

Ha=0

maxψ 0.035  

Ha=45

maxψ 0.025  
  

Ra=105 

   

 

Ha=0

maxψ 0.185  

Ha=45

maxψ 0.062  
  

Fig. 13. Contours of (a) streamlines, (b) isotherms and (c) total entropy generation for various Rayleigh numbers 
at AR=1, n=1.0, λ=90°, TMFA1, Ha=0 (Continuous lines) and Ha=45 (Discontinuous lines) 

 
 (a) (b) 

  

Fig. 14. Dimensionless temperature for variations of Hartmann number and angle of magnetic field applied at 
AR=1, TMFA1, n=1.0, (a) Ra=103 and (b) Ra=105 



 Mohammad Nemati  et al./ Energy Equip. Sys. / Vol. 10/No. 4/Dec. 2022 344 

The temperature profile in the middle of 
the cavity for the different Rayleigh numbers 
values in the shear thinning, Newtonian and 
thickening fluid is shown in Fig. 17. Changing 
the temperature profile from linear to 
horizontal by increasing the Rayleigh number 
indicates a change in the heat transfer 
mechanism from conduction to convection. 
Also, in all Rayleigh numbers, the maximum 
and minimum temperatures are related to the 
shear thinning and shear thickening fluid, 
respectively, which in the same proportion to 
the amount of heat transfer changes. 
According to Fig. 18, it can be seen that 
increasing the power-law index from 0.75 to 

1.25 for Rayleigh numbers 103, 104 and 105 
leads to a decrease of 15, 19 and 31% of the 
average Nusselt number, respectively. This 
trend of variations is observed for total 
entropy generation. At low Rayleigh numbers, 
due to the low convection effects and the 
predominance of thermal conductivity, the 
increase in fluid viscosity due to the increase 
in the power-law index has less effect. The 
Bejan number for variations of Rayleigh 
numbers and power-law index according to 
Table 7 shows that the share of heat transfer 
in entropy generation increases with 
increasing power-law index. 

 
S Nu  

  

(a) 

  

(b) 

Fig. 15. Average Nusselet number and total entropy generation for variations of Hartmann number and Rayleigh 
number at AR=1, TMFA1, n=1.0, (a) λ=0 and (b) λ=90° 
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The Bejan number also decreases with 
increasing Rayleigh number, because with 
increasing Rayleigh, the entropy due to fluid 
friction increases with increasing convection 
effects. According to Fig, 19, it is observed 
that with increasing the aspect ratio of the 
cavity, the movement space for the fluid flow 
increases and the flow strength more than 
doubles. The effect of the Rayleigh number is 
more evident as the aspect ratio increase. 
According to Fig, 20, in Rayleigh number 103, 
because thermal conductivity is predominant, 
increasing the aspect ratio leads to decreasing 
the average Nusselt number, but for other 
Rayleigh numbers, increasing the aspect ratio 
leads to increasing the Nusselt number. 
Because with increasing the aspect ratio of the 

cavity, the power of the convection increases. 
The highest entropy generation was observed 
in the highest aspect ratio and the highest 
Rayleigh number value. The effect of the type 
of magnetic field applied with variations of 
Rayleigh number is shown in Fig, 21. As can 
be seen, in low Rayleigh numbers, due to the 
predominance of thermal conductivity, the 
effect of the magnetic field is low and there is 
no significant difference between the different 
types of the magnetic field applied. This is 
very evident in the temperature profile. By 
changing the type of magnetic field applied 
from TMFA1 to TMFA4 for Rayleigh numbers 
103, 104 and 105, respectively, the heat transfer 
rate can be increased by about 5, 11 and 23 
percent. 

Table 6. Bejan number for variations of Hartmann numbers and Rayleigh numbers at AR=1, TMFA1, λ=90° and n=1.0 

  Ha=0 Ha=15 Ha=30 Ha=45 

Ra=103 

Be 0.882 0.885 0.885 0.885 

3 3

3

* Ra=10 Ra=10

Ra=10

Be - Be
Be =

Be
 0 0 0 0 

Ra=104 

Be 0.783 0.795 0.805 0.805 

4 3

3

* Ra=10 Ra=10

Ra=10

Be - Be
Be =

Be
 -11.2% -10.2% -5.8% -5.8% 

Ra=105 

Be 0.671 0.755 0.785 0.801 

5 3

3

* Ra=10 Ra=10

Ra=10

Be - Be
Be =

Be
 -23.9% -14.6% -11.3% -9.5% 

 

 
Ra=103 Ra=103 

  
Ra=103 

 

Fig. 16. Contours of isotherms for various Rayleigh numbers at AR=2, Ha=15, λ=0, TMFA1, n=0.75 
(Continuous lines) and n=1.25 (Discontinuous lines) 
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(a) (b) 

 
 

  

(c) 

 

Fig. 17. Dimensionless temperature in Y=0.675 for variations of power-law index and Rayleigh numbers at 
AR=2, TMFA1, Ha=15, λ=0, (a) Ra=103, (b) Ra=104 and (c) Ra=105 

S Nu 

  

Fig. 18. Average Nusselet number and total entropy generation for variations of power-law index and Rayleigh 
numbers at AR=2, TMFA1, Ha=15 and λ=0  

6.3. Effect of aspect ratio 

Table 8 shows the maximum value of the 
streamlines for different values of the aspect 
ratio and the power-law index. It is observed 
that increasing the aspect ratio for the shear-
thickening fluid has little effect on increasing 

the created strength of the flow, while for the 
shear-thinning fluid this effect is much more 
pronounced. Increasing the aspect ratio 
increases the moving space of the fluid and 
the fluid flows more easily. According to Fig. 
8 (b) and Fig. 22, it can be seen that in all 
values of power-law index and Hartmann 
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numbers, increasing the aspect ratio leads to 
increasing the average Nusselt number, which 
this effect decreases with increasing the 
power-law index. On average, increasing the 
aspect ratio from 0.5 to 2 leads to an increase 
of 25, 17 and 8% of the average Nusselt 
number for shear thinning, Newtonian and 
shear thickening fluids, respectively. 
Increasing the aspect ratio increases the 
convection effects and increases the cold wall 
surface for heat exchange. The effect of the 

type of magnetic field applied to the shear 
thinning and shear thickening fluid for the 
aspect ratio of the cavity is shown in Fig. 23. 
It can be seen that for the shear thinning fluid, 
the change in the type of magnetic field 
applied from TMFA1 to TMFA4 Nusselt 
number increases by an average of 4, 10 and 
14% for the aspect ratio of 0.5, 1 and 2, 
respectively, which this effect is for shear 
thickening fluid about 0, 3 and 6%. 

Table 7. Bejan number for variations of power-law index and Rayleigh numbers at AR=2, TMFA1, Ha=15 and λ=0  

  n=0.75 n=1.0 n=1.25 

Ra=103 

Be 0.685 0.688 0.691 
3 3

3

* Ra=10 Ra=10

Ra=10

Be - Be
Be =

Be
 0 0 0 

Ra=104 

Be 0.625 0.648 0.675 
4 3

3

* Ra=10 Ra=10

Ra=10

Be - Be
Be =

Be
 -8.7% -5.8% -2.3% 

Ra=105 

Be 0.581 0.641 0.668 
5 3

3

* Ra=10 Ra=10

Ra=10

Be - Be
Be =

Be
 -15.2% -6.8% -3.3% 

 

(a) 

  
 3Ra=10

maxψ 0.115  , 
5Ra=10

maxψ 0.251  

  
 

(b) 

    
3Ra=10

maxψ 0.058  , 
5Ra=10

maxψ 0.085  

   

Fig. 19. Contours of streamlines (blue lines), isotherms (red lines) and total entropy generation (black lines) for 
various aspect ratio and Rayleigh numbers at n=1.0, Ha=0, Ra=103 (Discontinuous lines), Ra=105 (Continuous 

lines)  (a) AR=2 and (b) AR=0.5 
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S Nu 

  

Fig. 20. Average Nusselet number and total entropy generation for variations of aspect ratio and Rayleigh 
numbers at n=1.0 and Ha=0  

(a) (b) 

  

Fig. 21. (a) Dimensionless temperature in Y=0.5 and (b) Average Nusselet number for variations of Rayleigh 
numbers and type of magnetic field at AR=2, n=1.0, Ha=45 and λ=0  

Table 8. Maximum values of streamlines (
max ) at Ra=105and Ha=0 

 n=0.75 n=1.0 n=1.25 
AR=0.5 0.108 0.085 0.0725 
AR=1 0.275 0.185 0.125 
AR=2 0.455 0.251 0.135 

 
7. Conclusion 

The aim of this study was to investigate the 
heat transfer and entropy generated by the 
natural convection of Newtonian and non-
Newtonian fluids in two types of shear 
thinning and shear thickening fluids inside a 
triangular cavity with variable aspect ratio. The 
magnetic field was applied to the cavity in 4 
different shapes, horizontally and vertically, 

and the simulation was performed by writing 
computer code in Fortran language using the 
multiple relaxation time lattice Boltzmann 
method. The accuracy of the obtained results 
was confirmed in comparison with the studies 
of different references. The effect of Rayleigh 
number, Hartmann number, type and angle of 
the magnetic field applied, power-law index 
and aspect ratio of the cavity was investigated. 
The most important results are: 
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1- In all cases, increasing the Hartmann 
number decreases the flow velocity that 
leading to a decrease in the flow strength and 
the average Nusselt number. On average, this 
effect is about 25% greater for shear-thinning 
fluid than for shear-thickening fluid. 

2- The angle and type of magnetic field 
applied are very important parameters in 
controlling the amount of heat transfer and can 
be used to achieve flows with desired strength. 
Applying a magnetic field horizontally creates 
a flow with less strength and for this reason, it 
also results in a lower average Nusselt number. 
Applying a uniform magnetic field compared 
to another type of applied leads to a greater 
reduction in heat transfer and flow strength. 

3- Increasing the fluid power-law index 
caused increases the viscosity of the fluid flow 
and reduces the ease of fluid movement, which 
reduces the strength of flow and the amount of 
heat transfer so that thermal conductivity is the 
predominant heat transfer phenomenon for the 
shear-thickening fluid. Due to the low 
convection effects for the shear thickening 
fluid, the effect of the angle and type of 
magnetic field applied is much less compared 
to Newtonian and shear thinning fluid. 

4- Increasing the aspect ratio of the cavity 
increases the space of motion of the fluid and 
leads to the formation of vortices with more 
power. More heat transfer and an increase in 
the effect of the magnetic field are observed by 
increasing the aspect ratio. The effect of the 

type and angle of the magnetic field applied is 
more obvious with increasing the aspect ratio 
of the cavity. Increasing the aspect ratio is not 
very effective for the shear-thickening fluid. 

5- The Rayleigh number variable can be 
used to achieve more powerful currents and 
increase heat transfer. Thermal conductivity is 
the predominant phenomenon in low Rayleigh 
numbers, which results in the lowest heat 
transfer rate. Increasing the Rayleigh number 
due to the increase in buoyancy forces 
increases the effect of the magnetic field, the 
aspect ratio of the cavity, and the power-law 
index. 

6- Based on the obtained results, it was 
observed that the total volumetric entropy 
generation increases with increasing Hartmann 
number, Rayleigh number and aspect ratio and 
decreasing power-law index of fluid. Except 
for the Ra=105, shear thinning fluid, AR=2 and 
absence of magnetic field (Be = 0.451), in 
other cases it can be seen that Be> 0.5, 
meaning that the heat transfer has the largest 
share in the entropy generated. The lowest 
amount of Bejan number is related to the shear 
thickening fluid and decreasing the Rayleigh 
number leads to increasing the Bejan number. 

7- Using this numerical study, a 
comprehensive view can be obtained of the 
design of heat transfer devices and equipment 
inside shaped cavities and it can be understood 
under what conditions the rate of irreversibility 
is minimal. 

S Nu 
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Fig. 22. Average Nusselet number and total entropy generation for variations of Hartmann number  at Ra=105, 
TMFA1, λ=90°, (a) AR=0.5 and (b) AR=1 

 

(a) (b) 

  

Fig. 23. Average Nusselet number for variations of aspect ratio and power-law index at Ra=105, Ha=45, λ=0, (a) 
AR=0.5 and (b) AR=2  
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