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ABSTRACT    

Energy harvesting is a conventional method to collect the dissipated 
energy of a system. In this paper, we investigate the optimal location of 
a piezoelectric element to harvest maximum power concerning 
different excitation frequencies of a vibrating cantilever beam. The 
cantilever beam oscillates by a concentrated sinusoidal tip force, and a 
piezoelectric patch is integrated on the beam to generate electrical 
energy. To this end, the system is modeled with analytical governing 
equations, then a Deep Neural Network (DNN)-based surrogate model 
is developed to appropriately model the system within the range of its 
first three natural frequencies. The surrogate model has significantly 
abated the computation cost. Thus, the optimization time is reduced 
drastically. Our investigations led to an optimal piezoelectric location 
for different excitation frequencies, which can result in maximum 
electrical output power. This location is highly dependent on the 
excitation frequency. When excitation frequency equals to natural 
frequencies, the maximum harvested power increases considerably. 
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1. Introduction 

One of the serious deficiencies in self-governing 
systems is their deprivation of sustainable 
energy supplies. In today’s electrical devices, 
usage of electrical energy for running electrical 
circuits has been reduced drastically. Therefore 
the importance of electrical power harvesting 
from environmental elements has increased. 
The use of piezoelectric materials as an energy 
harvesting element in flexible structures has 
been of popular concern in recent years. The 
main advantages of piezoelectrics are simple 
and  effective   integration  with   structures,  low  
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economic cost, and high precision in high duty 
cycles. On the other hand, cantilever beams are 
a modest modeling simplification for the 
vibration of many engineering cases like robot 
arms, airfoils, etc. To convert mechanical 
vibration energy into electrical power, some 
methods have been proposed; specifically, 
piezoelectric, electromagnetic, and electrostatic 
devices can perform this energy transformation 
[1, 2]. At the same time, the research about 
smart structures with piezoelectric elements has 
been studied extensively in recent years. 
Moreover, plenty of review articles about 
energy conversion in smart structures have been 
published [3, 4]. 

To attain the proper view of the behavior of 
smart structures in different vibration situations, 
some general methods for modeling the 
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vibration of smart structures have been 
proposed. Some models are based on the finite 
element method [5, 6]. Despite the finite 
element’s efficient method, analytical solutions 
have attracted more interests in energy-based 
studies, because of their straightforward nature 
in deriving general governing equations of 
motion [7]. 

To increase the generated power of harvesting 
devices, some optimization methods have been 
conducted. In [8, 9] the optimum structure of a 
beam for maximum harvested energy has been 
investigated. In the case of the vibrating base, 
some advance studies have been made. In [10, 
11] experimental and numerical research has 
been done on the generated voltage induced by 
vibrations of a cantilever beam in different 
frequencies close to the first natural frequency 
of the cantilever beam. Also, the topology of 
applied piezoelectric has been optimized in 
[12]. Some extension on the simple cantilever 
beams has been performed by attaching a tip 
mass to the free end, and then the harvested 
electrical power has been examined on the 
shunted circuit by changing the weight of the tip 
mass [13, 14]. 

The Finite Element (FE) approach for 
optimization would lead to time consuming and 
expensive calculations. Despite this 
disadvantage, Park, J. et al. have designed an 
optimization procedure to reduce the cost of 
computation required for the optimization of the 
shape of a cantilever beam by the FE method 
[15]. Here, to reduce intensive computations of 
the analytical model of a smart piezoelectric-
based cantilever beam, a surrogate model or 

meta-model has been used. Perera A. et al. [16] 
have shown that surrogate models based on 
Artificial Neural Networks (ANN) can reduce 
computation time up to 84% and can catalyst the 
optimization process drastically. Also, hybrid 
optimization algorithms can be used to maintain 
optimization accuracy. Surrogate models, 
coupled with numerical optimization heuristics, 
were widely used in agricultural [17], chemical 
[18], and mechanical [19-21] engineering fields. 
On the other hand, Villarrubia G. et al. have 
proposed a neural network-based optimization 
method, enabling us to find the derivative of the 
approximated function [22]. 

In this paper, first, the governing equation of 
a piezoelectric-based energy harvesting system 
is developed. To obtain the maximum harvested 
power from the cantilever beam smart structure 
in different excitation frequencies, the location 
of the piezoelectric on the cantilever beam is 
optimized. Also, to reduce the drastic 
computation cost in the optimization process, a 
surrogate model is developed. Finally, 
optimization results are presented to illustrate 
the effect of the optimum location of 
piezoelectric on the harvested power as well as 
on the system efficiency. 

 
2. General Modeling of Piezoelectric/Beam 

Equation 
 
Figure 1 illustrates the schematic view of a 
piezoelectric integrated cantilever beam. As can 
be seen, the forced vibration is streaming the 
electrical flow into the shunted circuit. 
 

 

 

 
Fig.1. Induced current into energy harvesting equation of piezoelectric 
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The first step in acquiring the general relation 
between the motion of the cantilever beam 
and the induced voltage in the piezoelectric 
patch is to derive the governing equations of 
the system.  Eq. (1) shows the Hamilton 
principle, 

𝛿𝐻 = 𝛿 ∫ (𝑇 − 𝑈 + 𝑊)𝑑𝑡 = 0 

𝑡2

𝑡1

 
(1) 

where, T and U are the kinetic energy and 
potential energy, respectively, while W is the 
virtual work of external forces applied on the 
system. In order to extract the energy 
parameters of Eq. (1) [23], the fundamental 
equations of piezoelectric actuator and 
sensors are needed: 
Actuator equation: 

𝑀�̈� + 𝐶�̇� + 𝐾𝑤 = 𝑓𝑒𝑥𝑡 + 𝜃𝑉𝑠ℎ  (2) 

Sensor equation: 

𝑄 = 𝜃𝑇𝑤 + 𝐶𝑝𝑉𝑠ℎ (3) 

It should be noticed that w is the lateral 
deflection of the beam and M, C and K are the 
mass, damping and stiffness matrices of the 
piezo/beam system, respectively. Also, Q is 
the piezoelectric charge and 𝜃 and is the 
electromechanical coupling matrix. Notice 
that 𝐶𝑝, 𝑉𝑠ℎ are the capacitance and induced 
voltage in the piezoelectric, respectively. The 
constitutive equation for the piezoelectric 
element in one of its common form is 
presented in Eq. (4) [24]: 

[
𝜎
𝐸

] = [
𝐸𝑠 −ℎ
−ℎ 𝛽

] [
𝜖
𝐷

]  
(4) 

where, 𝜎 and 𝐸 are stress and electric field in 
the piezoelectric, respectively. 𝐸𝑠 is the 
elastic modulus at the constant displacement, 
h is the piezoelectric constant and 𝛽 is 
dielectric constant. Now with a basic 
knowledge about the piezoelectric and beam, 
parameters in Eq. (2) can be calculated. 
Consider that the kinetic and potential energy 
in the system consist of two terms, the beam 
and the piezoelectric part; first of all, the 
kinetic energy is defined by Eq. (5) [25]. 

𝑇 = 𝑇𝑏 + 𝑇𝑝 , 
 

𝑇𝑏 =
1

2
∫ 𝜌𝑏𝐴𝑏 (

𝜕𝑤

𝜕𝑡
)

2

𝑑𝑥
𝐿𝑏

0

 , 
 

𝑇𝑝 =
1

2
∫ 𝜌𝑝𝐴𝑝 (

𝜕𝑤

𝜕𝑡
)

2

𝑑𝑥
𝑑2

𝑑1

 
(5) 

The strain energy of the piezo/beam system 
can be described in Eq. (6). Note that the 
potential energy of the piezoelectric consists 
of two parts; the dynamics of the system and 
the electromechanical property of the piezo 
material. 

𝑈 = 𝑈𝑏 + 𝑈𝑝 ,  

𝑈𝑏 =
1

2
∫ 𝐸𝑏𝐼𝑏 (

𝜕2𝑤

𝜕𝑡2
)

2

𝑑𝑥
𝐿𝑏

0

 , 

 

 

𝑈𝑝 =
1

2
∫(𝜖𝑇𝜎 + 𝐸𝐷)𝑑𝑉 =

1

2
∫ (𝐸𝑝𝐼𝑃

𝑑2

𝑑1𝑉

+ 2𝑏ℎ31𝐷𝑧𝑛 (
𝜕2𝑤

𝜕𝑥2
)

+ 𝐴𝑝𝛽33𝐷2)𝑑𝑥 

 

(6) 

 The virtual work of Hamilton’s principle 
consists of three parts; the first part is induced 
by piezoelectric voltage, the second part is 
from the external force on the cantilever 
beam, and the last part is generated from 
internal damping of the beam, as shown in the 
following equation: 

𝛿𝑊 = 𝑍�̇�𝛿𝑄 + ∫ 𝑓(𝑥, 𝑡)𝛿𝑤
𝐿𝑏

0

− ∫ 𝐶𝑏

𝜕𝑤

𝜕𝑡

𝐿𝑏

0

𝛿𝑤𝑑𝑥 

(7) 

where, Z is the overall impedance of the 
circuit, including the piezoelectric. Now, by 
using the assumed mode method, the Eq. (2) 
can be converted into a set of ordinary 
differential equations by using the following 
approximation. 

𝑤(𝑥, 𝑡) = ∑ 𝜓𝑖(𝑥)𝑊𝑖(𝑡)

𝑛

𝑖=1

= [𝜓]𝑇[𝑊] 

(8) 

In the above equation, 𝜓𝑖 is the mode shape 
of the cantilever beam which is selected as 
[26]: 

𝜓𝑖(𝑥) = 𝑐𝑜𝑠ℎ𝛽𝑖𝑥 − 𝑐𝑜𝑠𝛽𝑖𝑥
− 𝜎𝑖(𝑠𝑖𝑛ℎ𝛽𝑖𝑥
− 𝑠𝑖𝑛𝛽𝑖𝑥) 

(9) 
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Applying these mode shapes into the 
Hamilton equation, the following general 
equation of motion would be generated: 

𝑀�̈�(𝑡) + 𝐶𝑏�̇�(𝑡) + 𝐾𝑊(𝑡)
= 𝑓𝑒𝑥𝑡 + 𝑓𝑝𝑖𝑒𝑧𝑜 

(10) 

where, 

𝑀 = 𝜌𝑏𝐴𝑏 ∫ 𝜓𝑖𝜓𝑖
𝑇𝑑𝑥

𝐿𝑏

0

+ 𝜌𝑝𝐴𝑝 ∫ 𝜓𝑖𝜓𝑖
𝑇𝑑𝑥

𝑑2

𝑑1

 

𝐾 = 𝐸𝑏𝐼𝑏 ∫ 𝜓𝑖
″𝜓𝑖

″𝑇𝑑𝑥
𝐿𝑏

0

+ 𝐸𝑝𝐼𝑝 ∫ 𝜓𝑖
″𝜓𝑖

″𝑇𝑑𝑥
𝑑2

𝑑1

 

𝐶 = 𝛼𝑀 + 𝛽𝐾 

𝑓𝑒𝑥𝑡 = ∫ 𝜓𝑖𝑓(𝑥, 𝑡)𝑑𝑥
𝐿𝑏

0

 

𝑓𝑝𝑖𝑒𝑧𝑜 = −𝑏𝑝ℎ31𝐸𝑝𝑉𝐿ℎ𝑝(ℎ𝑏

+ ℎ𝑝)[𝜓𝑖
′(𝑑2)

− 𝜓𝑖
′(𝑑1)] 

 

 

It should be mentioned that in order to extract 
the damping matrix, Rayleigh-Ritz method 
has been used [27]: 

{
𝛼 + 𝛽𝜔𝑛1

2 − 2𝜁1𝜔𝑛1
= 0

𝛼 + 𝛽𝜔𝑛2
2 − 2𝜁2𝜔𝑛2

= 0
 

(11) 

The coefficients 𝜁1, 𝜁2 in Eq. (11) are 
determined through experimental tests. In 
order to calculate the induced voltage of the 
piezoelectric, the governing equation of the 
circuit, including the piezoelectric sensor, 
should be used. 

 
3. General Modeling of Piezoelectric Energy 

Harvesting Circuit 
 
The current equation can be obtained by 
differentiating Eq. (3) and then substituting it 
into the voltage equation of the circuit shown 
in Fig. 1. As a result, we can define the circuit 
model as Eq. (12): 

𝑉𝐿 = −𝑍𝐼 = −𝑍 (
𝑑

𝑑𝑡
([𝑑]𝑇{𝑇}

+ [𝜀]𝑇{𝐸})) 

(12) 

By using Laplace operator on the 
governing equation of the circuit, the 
equations will be transferred into the linear 

space. Also, by substituting the mode shapes 
of the cantilever beam into the variables, the 
redefined voltage of the piezoelectric would 
be as follows [24]: 

𝑉𝐿 =
−𝑍𝐶0𝐷𝑛𝑠𝑊

1 + 𝑍𝐶𝑝𝑠
 (13) 

where, 

𝐶0 = 𝑑31𝐸𝑝
𝐸𝑏𝑝 (

ℎ𝑝

2
+ ℎ𝑝)  𝑎𝑛𝑑 𝐷𝑛

= ∫
𝜕2𝜓𝑖

𝜕𝑥2

𝑑2

𝑑1

𝑑𝑥 

(14) 

In order to achieve the electrical power 
attained from the induced voltage of 
piezoelectric, the average power is 
determined from the following equation: 

𝑃𝑎𝑣𝑒 =
𝑉𝑟𝑚𝑠

2

𝑍
         , 𝑉𝑟𝑚𝑠 =

𝑉

√2
 

(15) 

 
4. Surrogate Model 
 
Surrogate models are widely used to decrease 
the complexity and computation cost of the 
analytical models. A surrogate model can be 
modeled in different ways. We have used 
Artificial Neural Networks (ANN) to train a 
deep neural network to mimic the analytical 
model behavior. In the optimization process, 
we will use the developed surrogate model to 
find optimum points of an objective function 
due to different excitation frequencies. This 
approach enables us to use numerical 
optimization heuristics (e.g. Genetic 
Algorithm) to find the optimal points. 

To obtain the proper surrogate model, the 
system was modeled by its first three mode 
shapes. The natural frequencies of the system 
were determined by solving the eigenvalue 
problem of Eq. (10), which were found to be 
3.49, 21.72, and 60.62 Hz. In the following 
section, our model was trained with a dataset 
acquired by applying a sinusoidal excitation 
force with a frequency range of 0 to 64 Hz to 
contain the dynamic behavior of the system 
for the three mode shapes. 

 
4.1. Artificial Neural Network (ANN) 

 
An Artificial Neural Network (ANN) consists 
of artificial neurons with specific activation 
functions. A perceptron is a simple neuron 
with the activation function presented in (16): 
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𝑓(𝑥) = {
1    , 𝑥 > 0
0    , 𝑥 ≤ 0

 (16) 

A simple ANN can consist of several 
perceptrons in a feedforward arrangement to 
create a multilayer perceptron (MLP). MLPs 
have at least three layers: an input layer, a 
hidden layer, and an output layer. However, 
in an MLP, some neurons can possess 
nonlinear activation functions such as (17) 
and (18), which is called hyperbolic tangent 
and logistic sigmoid functions, respectively. 

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

(17) 

logsig(𝑥) =
1

1 + 𝑒−𝑥
 

(18) 

As we can deduce, “tanh” and “logsig” 
functions range from -1 to 1 and 0 to 1, 
respectively. This is useful when we are 
modeling different analytical models, because 
some physical parameters cannot be a 
negative value, inherently. 

 
4.2. Deep Neural Networks (DNN) 

 
An ANN with more than one hidden layer is 
occasionally called Deep Neural Networks 
(DNN). While MLPs are good at 
classification and curve fitting, a DNN can 
learn more complex functions, due to more 
connections between neurons and the higher 
number of neurons and hidden layers. DNNs 
use more complicated activation functions 
and more sophisticated neuron types [28].  
 

4.3. Trained Model 
 
After a concise introduction about ANNs, we 
are ready to train a DNN to faithfully present 
the obtained analytical model for the 
piezoelectric-based cantilever beam energy 

harvester. To this end, we have used two input 
variables; excitation frequency and 
piezoelectric location, and one output; power 
generated by the piezoelectric to train the 
DNN model. By using the trial and error 
approach, a two-layer neural network was 
obtained as shown in Fig.2. The first hidden 
layer consists of 20 neurons with tanh 
activation function, while the second hidden 
layer has only 10 neurons with logsig 
activation function. The activation function of 
output neuron is a linear function that passes 
the sum of all weighted inputs as output. 

Levenberg-Marquardt backpropagation 
method was implemented to update the 
weights and bias of each neuron to obtain a 
decent result [29]. The DNN was trained with 
the calculated dataset containing more than 
5000 exclusive data from the analytical 
model. The training, validation, and test 
datasets were selected randomly with ratios of 
70%, 15%, and 15% of the total dataset, 
respectively. While obtaining 5000 data from 
the analytical model can take about 21 hours 
for computation by a typical computer, 
procuring the same amount of data using the 
trained DNN can only take about 70 seconds. 
As a result, the computation time has 
drastically reduced, which enables us to use 
numerical optimization approaches. Without 
the implementation of the surrogate model, 
we could optimize the objective function by 
neither numerical methods nor exact methods 
at a normal time. 

Figure 3 shows the surface obtained by the 
two approaches. As it can be seen, the trained 
DNN could properly mimic the original 
analytical model. Specifically, the DNN 
completed training in 211 iterations with the 
mean square error of 3.71e-15. In the next 
section we will use the DNN in the 
optimization process. 

 

 
Fig.2. Deep neural network architecture used as a surrogate model. 
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Fig. 3. The effect of excitation frequency and piezoelecteric location on the average power harvested from 

piezoelectric. a)results from the analytical model. b)results from the trained DNN 

 
5. Optimization 
 
Our primary goal in this section is to find 
optimum locations of the piezoelectric on the 
cantilever beam to maximize the harvested 
energy for different excitation frequencies. 
According to the intense computation of the 
analytical governing equations, we have 
developed a surrogate model in the previous 
section. In this section, the surrogate model 
and Genetic Algorithm (GA) are used to 
optimize the harvested energy by the system. 
The genetic algorithm was implemented with 

a population of 50, crossover fraction of 0.8, 
and Gaussian mutation with scale and shrink 
of 1.0. We have used excitation frequencies 
ranging between 0 to 64 Hz (400 rad/s). For 
each frequency, the optimization was done 
with 30 iterations to find the optimum point. 
An overview of optimal piezoelectric 
locations is illustrated in Fig.4.  It is obvious 
that by getting close to each natural 
frequencies, the optimum location for the 
maximum efficient energy harvesting process 
transits to the antinodes (middle of the nodes) 
of the resonated mode shape.  

 
Fig.4. Optimum points for dimensionless piezoelectric location in different excitation frequencies to obtain 

maximum average harvested power  
 

(a) (b)
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6. Results and Discussions 
 
The properties of the beam and the piezoelectric 
are presented in Table 1 and Table 2, 
respectively. The analytical model of the 
cantilever beam was introduced in previous 
sections. Also the proper model for the induced 
voltage and the harvested power have been 
developed with the first three vibration natural 
frequencies. As a matter of computational cost, 
the surrogate model for this process have been 
proposed. The optimum location for 
piezoelectric energy harvester depends 
drastically on the excitation frequency. Figure 5 
demonstrates the three natural frequencies of the 
beam and their corresponding maximum 
average harvested power. The solid red curve 
indicates the average harvested power and a 
solid blue curve with square markers shows the 
mode shapes of the beam in the corresponding 
natural frequencies. As we expected, the 
optimal location of the piezoelectric element 
highly depends on the working frequency, 
which is majorly determined with the dominant 
natural frequency. A mathematical explanation 
of this phenomena is that the induced voltage of 
piezoelectric depends on the integration of 
changes in the slope of the beam, according to 
Eq. (13). By increasing the excitation 
frequency, the higher mode shapes gain a higher 
portion to the overall shape. Thus, by 
integrating of the curvature of the beam, which 
is a symbol of slope changes, the direct relation 
can be observed between optimal piezoelectric 
location and beam dominant mode shape 
antinodes (the section with the highest 
curvature). 

The overall power generated by the piezo 
element as a result of the vibration of the 
structure is incremented with increasing the 
excitation frequency of the applied force, as it is 
illustrated in Fig.6.The local extrema (around 3 
Hz, 20 Hz, and 60 Hz) are due to resonance 
phenomena in the structure. 
 
7. Conclusions 
 
The main struggle in energy harvesting studies 
is to achieve the best performance of 
transducers. 

Fig.5. Average harvested power from piezoelectric 
in the frist three natural frequencies of the system. 
(a) excitation frequency of 3.5 Hz, (b) excitation 

frequency of 22 Hz, (c) excitation frequency of 61 
Hz. 

 

(b)

(c)

(a)
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Table 1. Beam Properties 

Symbol Quantity Unit Value 

𝐿𝑏 Length of the beam mm 500 

𝑊𝑏 Width of the beam mm 53.7 

ℎ𝑏 Thickness of the beam mm 1 

𝜌𝑏 The density of the beam kg/m3 2690 

𝐸𝑏  
Young modulus of the 

beam 
GPa 70.9 

 

Table 2. Piezoelectric Properties 

Symbol Quantity Unit Value 

𝐿𝑝 ∗ 𝑊𝑝 ∗ ℎ𝑝 
Dimensions of piezo 

patch 
mm 30*33.27*1 

𝑑31 
Strain coefficient of 

piezo patch 
C/N 274 E-12 

𝜌𝑃 
The density of piezo 

patch 
kg/m3 7750 

𝐸𝑃 
Modulus of elasticity of 

piezo patch 
GPa 63.9 

𝐶𝑃 
The capacitance of piezo 

patch 
μF 5 E-4 

 

 
Fig.6. Maximum average harvested power in different excitation frequency of the cantilever beam 

 

 

Piezoelectric-based energy harvesting 
structures were optimized in various aspects 
during previous works. In this paper, the 
effect of piezoelectric location on the 
harvested energy for different working 
frequencies of a cantilever beam has been 
investigated. To obtain the proper model of 
the system, the energy-based modeling of the 

piezo/beam system has been accomplished. 
On the other hand, because of the complexity 
of the system equations, a surrogate model 
was developed to ease the iterative 
optimization process of the genetic algorithm. 
The governing equations of the system were 
obtained by using the first three mode shapes 
of the system. The optimization process was 
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performed in a frequency range of 0 to 64 Hz 
to cover the first three natural frequencies of 
the system in determining the optimum 
location of the piezoelectric energy harvester. 
In the first mode shape, the best location was 
found to be near the root of the beam; the 
second and third mode shapes imposed the 
optimum location to be around the antinodes 
of the corresponding mode shapes. Also, to 
gain the most efficient response from the 
vibration-based energy harvesting systems, 
this research introduced an effective 
optimization goal for the location of energy 
harvester elements and simplified the 
optimization process. 
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