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ABSTRACT    

Wind energy today, has attracted widespread interest from among a 
variety of sources of renewable energy in the world. Owing to the 
increasing demand for production of electrical energy for electricity 
networks by using wind power, it is essential that wind power plants 
are actively incorporated in the network’s performance using an 
appropriate control system. In general, these wind power plants 
consist of various types of wind turbines and generators, one of them 
being a doubly fed induction generator (DFIG). Strict and total 
control of DFIG is necessary for maintaining a high level of efficiency 
in utilizing the advantages and benefits of a modern wind plant. To 
achieve this aim, using the linear controllers is a difficult method 
because the wind plants involve some uncertainties. Nevertheless, 
there exists an unstable condition which may reduce the DFIG 
system’s performance. In this research, a predictive control has been 
proposed for power control in order to overcome these problems. 
Control is established by optimizing a Cost Function considering the 
reality of the tracking factors. The prediction has been done on the 
basis of a DFIG model. Finally, results of the simulations carried out 
proved the performance of the controller. 
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1. Introduction 

Wind power is technologically and 
economically known to be a relatively steady 
source of electricity production [1]. Wind 
power systems account for being one of the 
important sources of renewable energy. 
Doubly fed induction generator (DFIG)-based 
systems have been widely used due to the low 
cost of convertors and the independent active 
and reactive power controls [2]. 
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 The DFIG stator can be directly connected 
to the grid, as also its rotor, by means of a 
two-sided convertor (Fig.1). The connection 
of the convertor to the rotor controls the 
active and reactive power between the DFIG 
stator and AC source, or an independent grid. 

Vector control is one of the most common 
methods employed in the DFIG-based wind 
turbines [3]. A wind turbine control system is 
traditionally based on the orientation of the 
stator flux [4] and the orientation of the stator 
voltage [5]. This scheme divides the rotor 
current into active and reactive power 
components. The activ e and  reactive  power 
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control is obtained with a rotor current 
controller. Some researchers have used 
proportional-integral (PI) controllers and a 
vector control with stator flux orientation 
[6,7]. The problem of PI controllers, gains 
reformulation, and cross-coupling in DFIG is 
all in the implementation delimitation. There 
are interesting solutions written about these in 
references [8] and [9]. 

Research shows that using a predictive 
functional controller [10] and an internal 
controller [11] represents satisfactory 
performance when compared with a PI 
response. Utilization and implementation of 
this system is really difficult owing to the 
complex formulation of these two controllers. 
Another technique for power control of DFIG 
can be carried out with the aid of fuzzy logic 
[12]. These techniques can offer a relatively 
favorable power response, although the 
occurrence of errors in estimating the 
parameters can weaken the response. 

Direct power control (DPC) is based on the 
principles of direct torque control [13]. DPC 
technique for DFIG control of power has been 
elaborated in reference [14]. This technique 
estimates the rotor voltage space vector based 
on the stator flux, and then accounts for power 
errors. In reference [15], DPC principles and 
implementation are obtained by hysteresis 
controllers and variable switching frequency. 
The basis of this method has been elaborated 
in references [16,17], and the simulation 
results have been presented using variables 
and constant switch frequencies, respectively. 
Moreover, the common DPC makes complex 
the design of AC filters due to its variable 
switch frequency. Power error  vector  control  

 is an alternative for DPC [18]. This strategy 
has less complexity, and generates results 
similar to DPC. 

Another method of control has been 
suggested for improving the performance of 
the controller [19]. This method reflects a 
proper performance although that is a demerit 
for this method of (power) control, in which 
the rotor’s current, is increased by 
overshooting. 

Predictive control is the method used in 
electrical machine drives [20] and inverters 
[21]. There is some research available on 
implementing this method in induction motor 
drives [22,23]. Operational predictive control 
has been established using a rotor current loop 
for DFIG power control [24] and predictive 
DPC established for DFIG [25]. This 
technique has a satisfactory power response, 
although control does not predict the outputs 
(active and reactive powers), and the power 
response may face reduction. In this case, a 
nonlinear model has been presented for DFIG 
predictive control which entails tedious and 
extra calculations [26]. 

In the second part of this paper, we have 
attempted to explain the model-based 
predictive control (MBPC). In the third part, 
modeling and dynamic performance of a 
DFIG has been presented. In the fourth and 
fifth parts, the control technique has been 
explained for stator flux orientation and 
implementation of machine rotor equations. 
The sixth part contains the implementation of 
a nonlinear predictive control strategy for 
DFIG. The seventh and final part gives the 
simulation results in order to observe the 
performance of the proposed controller. 

 

 
Fig.. 1. Configuration of a DFIG connected to a grid 
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Nomenclature 
 

DFIG Doubly fed induction generator 

AC Alternating current 

PI Proportional-integral 

DPC Direct power control 

PID Proportional-integral-derivative 

Dq Direct-axis & quadrature-axis 

MBPC Model-based predictive control 

Vds 
Stator voltage in d reference-
Volt 

Vqs 
Stator voltage in q reference-
Volt 

Vdr 
Rotor voltage in d reference-
Volt 

Vqr 
Rotor voltage in q reference-
Volt 

Rs Stator resistance-Ω 

Rr Rotor resistance-Ω 

Lls Stator inductance-Henry 

Llr Rotor inductance-Henry 

Lm Mutual inductance-Henry 

Ids 
Stator current in d reference-
Amp 

Iqs 
Stator current in q reference-
Amp 

Idr 
Rotor current in d reference-
Amp 

Iqr 
Rotor current in q reference-
Amp 

ωe 
Synchronous angular speed-
Rad/sec 

ωr Rotor’s angular speed-Rad/sec 

𝜙 ds Stator flux in d reference-Weber 

𝜙 qs Stator flux in q reference-Weber 

𝜙 dr Rotor flux in d reference-Weber 

𝜙 qr Rotor flux in q reference-Weber 

Ps Stator’s active power-Watt 

Qs Stator’s reactive power-Var 


X  State variable derivative vector 

U  Input vector 

Y  Output vector 
 

 A State matrix 

B Input matrix 

C Output matrix 

I Identity matrix 

 X 1k  Discrete-time state equation 

d
A  Discrete-time state matrix 

d
B  Discrete input matrix 

d
C  Discrete output matrix 

T Sampling period 

k Sampling time 

m 
First step of value of 
prediction 

of state variables 

ny Predictive horizon 

nu Control horizon 

Z.M Zero matrix 

O Number of outputs in Z.M 

tra Transpose 
N

X ( )k  New state variable matrix 

N Letter indicates the new 
matrix 

CF Cost function 

( q ) 1

R y
n

w
 

  
V Vector of future output 
references 

( q ) ( q )

R
y y

n n

y
W

  

  A defined positive matrix 

R u u

u

n n

W


  A defined positive matrix 

q Outputs 

 
2. Model-based Predictive Control Strategy 
 
MBPC being currently used in recent decades, 
has played a significant role in modern control 
engineering. This kind of control involves the 
widespread spectrum of applications, such as 
the chemical industry and even the food 
industry. The term, predictive control, does 
not denote a specific control method; it refers 
to the wide range of the control methods in 
which obtaining a control signal by using 
minimization of a Cost Function is possible 
through an explicit processing model. These 
design methods lead to the linear controllers 
which have the similar structure and the same 
degree of freedom. The basic idea which 
emerged in the predictive controls family is 
based on the following cases [27]: 
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 Using a model for predicting the output of 
the process in future times. 

 Calculating a sequence control with the 
aid of minimizing of a Cost Function. 

 Using the abandoning strategy which 
includes the utilization of the first control 
element in the calculated sequence control 
at any moment. 

Different algorithms of MBPC among 
themselves are only different in the model 
used to display the process, noise and the Cost 
Function, which have to be minimized. This 
control method is widely used in the industry 
and in the academic sciences. Among the 
applications for this type of control are their 
uses in robot arms, steam generators, and so 
on. The good performance of these 
applications represents the potential of MBPC 
for obtaining the most effective control 
systems that can be used with any intervention 
over a long period of time. 

In the following, some advantages of 
MBPC are presented [27]: 
 This method can be easily implemented 

by having some knowledge about control, 
since the concepts are easy to be 
understood, and with relatively simple 
properties. 

 This control method can be used for 
controlling an endless series of processes 
whether with simple dynamics or with 
complex dynamics including the systems 
with huge time delays, the phase 
nonminimum systems, or the unstable 
systems. 

The multivariable systems can be easily 
controlled by means of this method. 
 This method is suitable for the dead-time 

systems. 
This method has its own disadvantages. 

First, deriving it (obtaining control signal) is 
more complex than that of the classic 
Proportional-Integral-Derivative (PID) 
controllers. If the dynamics of the process 
does not change, the controller coefficients 
can be predetermined, but all calculations 
must be repeated for each time sample in the 
case of adaptive control. While the constraints 
are taken into account, the extent of necessary 
calculations increases. Second, there is an 
urgent need for a proper model. However, the 
merits have superiority over demerits, making 
it very useful in the industry. 

 
3. Modeling DFIG 

 
The equivalent circuit of DFIG in dq 
reference frame is shown in Fig.2 [28]. 

 

 
Fig. 2. DFIG equivalent circuit           

Voltage and flux equations represent the 
behavior of DFIG in dq reference frame in the 
following relations [28]: 

ds

ds s ds e qs

d
V R I

dt


     

 
(1) 

qs

qs s qs e ds

d
V R I

dt


     

 
(2) 

( )dr

dr r dr e r qr

d
V R I

dt


       

 
(3) 

( )
qr

qr r qr e r dr

d
V R I

dt


     

 

 
(4) 

( )ls ds m ds drds L I L I I     (5) 

( )
qs ls qs m qs qr

L I L I I     (6) 

( )dr lr dr m ds drL I L I I     (7) 

and  

( )lr qr m qs qrqr L I L I I     (8) 

 
Equations 1, 2, 3 and 4, respectively, suggest 
the stator voltage in d reference, the stator 
voltage in q reference, the rotor voltage in d 
reference, and the rotor voltage in q reference. 
The relations 5, 6, 7 and 8, respectively, 
suggest the stator flux in d reference, the 
stator flux in q reference, the rotor flux in d 
reference, and the rotor flux in q reference. Rs, 
stator resistance; Rr, rotor resistance; Ids, stator 
current in d reference; Iqs, stator current in q 
reference; Idr, rotor current in d reference; Iqr, 
rotor current in q reference; ωe, synchronous 
angular speed; ωr, rotor’s angular speed. 

  The stator’s active and reactive powers are 
obtained from  

3
( )

2
s ds ds qs qs

P V I V I   
 

(9) 

and 
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3
( )

2
s qs ds ds qs

Q V I V I   
 

(10) 

4. Control Method by Stator Flux Orientation 
 
With respect to Fig.3, in the method control 
by stator flux orientation, the stator flux is 
placed on the d axis. This method is to detach 
the d and q axes so that all stator flux is 
oriented on the d axis, thus, 

( ), 0
s ds ls ds m ds dr qs

L I L I I        (11) 

Moreover, all stator flux is oriented on the q 
axis, thus, 

, 0
qs

qs s qs e ds dss

d
V R I V

dt
V


       

 
(12) 

Therefore, using this principle, the stator’s 
currents in longitudinal and transverse 
components, according to Eqs.5 and 6, are 
rewritten as 

 
1

( )ds m dr

ls m

sI L I
L L

 


 (13) 

and 

( )m
qs qr

ls m

L
I I

L L
 


 

 
(14) 

Moreover, active and reactive powers in 
Eqs.9 and 10 are converted as 

3
( )

2

m

s s qr

ls m

L
P V I

L L
 



 
 
 

 
 
(15) 

and 

3 1
( ( ))

2
s s s m dr

ls m

Q V L I
L L

 


 
 
 

 
 

(16) 

As shown in Eqs.13–16, the currents of the 
rotor are reflected both in the stator current 
and in the active and reactive power. 
Therefore, controlling power is possible by 
controlling the rotor’s currents. 
 
5. Rotor Side Equations 
 
With Eqs.7 and 8, and putting them in Eqs.3 
and 4, namely, the rotor’s voltage in the 
transverse and longitudinal axis components, 
Vdr and Vqr are rewritten. This rewriting will 
be used in state equations of rotor’s currents 
of transverse and longitudinal axis 
components, Idr and Iqr . Therefore, 

dr

dr ds dr
r dr lr m m

e lr qr e m qs e m qr r lr qr

r m qs r m qr

V
dI dI dI

R I L L L
dt dt dt

L I L I L I L I

L I L I

   

 

    

   



 
 

 
qr

qr qs qr

r qr lr m m

e lr dr e m ds e m dr r lr dr

r m ds r m dr

V
dI dI dI

R I L L L
dt dt dt

L I L I L I L I

L I L I

   

 

    

   



 
The above equations are rearranged as 

 

 

  

( )
m ds m e r qs

r lr m dr

e r l

d

r m q

r

r

d
L I L I

dt

d
R L L I

dt

L L I

V  

 

    

  

 

 
 
 

 

 
 
 
 
 

(17) 

and 

 

  

( )
m e r ds m qs

r lr m dr

e r lr m

r

qr

q

d
L I L I

dt

d
R L L I

t

L

V

d

L I

 

 

   

  

 

 
 
 

 
 
 

 

 
 
 
 
 

 
(18) 

Putting Eqs.13 and 14 in 17 and 18, the state 
equation of rotor currents and DFIG model 
are obtained using 

 

 

( )

( )

1

2
( )

r
e r

m m lr

e r

r
r m lr

m m m lr

e r m lr

m

R

L L L

R
R L L

L L L L

L L
L

a b

c

d

 

 

 

  
  

   

  
         

  


 



 

 
 
 
 
 
 
 
 
(19) 

 
 

1
0

1 1

0
1 0

( )
0 1

dr

dr

qr qr

drm m lr

qr
m lr

m m m lr m

e r
s

m

dI

Idt

dI I

dt

VL L L

V
L L

L L L L

a b

c d

L

L

 


 

 
    
     
     
  

 
     
   
   

 

 
     

 
   

   
 

  

 

Equation 19 is presented as a state space 
equation. That is 

X AX B U

Y CX



 

  

 

And in Eq.19, 
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m

m ls

L

L L
 

  

 

where the output matrix is an identity matrix 

1 0
C

0 1
I

 
   

  . 

 

 
6. Nonlinear Predictive Control Strategy for 

DFIG 
 
Here, in order to design a predictive control 
for DFIG, Eq.19 is discretized as follows [29]: 

 X 1 X( ) U( )
d d

k A k B k      (20) 

   Y X
d

k C k   (21) 

0

A

B

C

AT

d

AT

d

d

A e I T

B e Bd T

C





  

 





 

 

Equation 20 is rewritten as 22 by replacing 
the sampling times in both sides: 

    

 

X 1 X( ) X( ) X 1

U( ) U( 1)

d

d

k k A k k

B k k

     

 

 

 
 

(22) 

In Eq.22, the variables in the left and right 
of the equation, and the control variables, are 
separated and marked as follows: 

   X 1 X 1 X( )k k k    
 

 

 X( ) X( ) X 1k k k     
 

U( ) U( ) U( 1)k k k      

Let m=1,2,…,n, then Eq.22 is by means of 
above-mentioned formulas: 

    

 

     

 

X( ) X 1

U( ) U( 1)

X 1 X 1

U

X 1 X(

1

)

X

d

d

d

d

k k

k m

A k k

B k k

k m A k m

B k m

   

 

       















(23) 
Equation 23 represents the first step of “m” 

value of prediction of state variables; “ny” is 
the predictive horizon. Its selection is vital for 
performance of the control, since the selection 
of a high value for this parameter improves 
the stability of the system, but it can increase 
the values of calculations to more than what is 
needed. 

 Generally, the predictions in the length of 
predictive horizon and control horizon “nu” 
are calculated as in the following equations: 

 

    

 

X( ) X( )

U( )

X( ) X( )

U( ) U( 1

2

)

X 1 |

X |

d

d

d d d

d d d

k A k

B k

k A A A

k k

k k k

I A B k B k

   

 

     

    







(24) 

 
1

1

1

1

X( ) X( )

U( ) U( 2

X 1 |

)

u

u

n

b

d

b

n

b

d d d

u

u

b

k n k A k

k n

k

A B k B









    

     


 
 
 

 
 
 





(25) 
In control law, let nu =1, then the input range 
is an average value that allows the outputs to 
comply with the reference values. Let nu >1, 
then strategy control produces the control 
signals which cause the output to follow the 
reference closely and accurately. Selecting the 
large values for nu, produces the large number 
of control signals and increases the values of 
calculations to more than what is needed. 

If constructing the following matrices 

 

 

 

X( )

X 1 |

X 2 |

X 1 |
u

k

k k
X

k k

k n k






 

 
 
 
 
 
 
 

 

 

 

 

 

U( )

U 1 |

U 2 |

U 1 |
u

k

k k
U

k k

k n k



 
 

 

  

 
 
 
 
 
 
 

 

 

then, 

X U      (26) 

In Eq.26, 

1 2

1 1

1 1

0 0 0

0 0

0
u u

d

n n

b b

d d d d

b b

B

A B A B

 

 

 

 

 
 
 
 
 
        
    
 

 

Also, in Eq.26, we have 
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 
2

1

1

1

X( )

X( ) X( )

X( ) X( )

X( ) X( )
u

d

b

d

b

n

b

d

b

k

k A k

k A k

k A k








 

 


 

 
 
 
 
 
 
 
 
  

  
  




 

 

To incorporate the X( )k  to  Y k  output, 
we construct a matrix with new state 
variables; but before rewriting Eq.22 in the 
form of Eq.27. Then, 

 (27) 

In Eq.27, the input of the state space model 

is U( )k . 
In the following, we construct the new state 

variable matrix: 

 

tra

N X( )
X ( )

Y

k
k

k



 
  
 

 
 

(28) 

In Eq.28, “tra” symbol is the transposition 
of the matrix, and the letter “N” indicates the 
new matrix. 
  Therefore, accounting for Eq.27 and the 
following Eq.29, we reach a new state space 
model in Eq.30: 

    

    

Y 1 Y( ) X 1 X( )

X 1 X( ) U( )

d

d d d d

k k C k k

C k C A k B k

   

    

 



 

 
(29) 

 

 

 

X 1 Z.M X( )

Y 1 Y( )

U( )

X( )
Y( ) Z.M

Y( )

d

d d

d

d d

k A k

C A Ik k

B
k

C B

k
k I

k

  
 









    
         

 
 
 

 
 
 

 

(30) 
In Eq.30, “Z.M” represents a zero matrix, 

that is 

0 0

0 0
O O

 
 
 
 
 

, with O×O dimensions), 

in which O is the number of outputs, and “I ” 
is an identity matrix with O×O dimensions. 

The state space model in Eq.30 can be 
rewritten like Eq.31. Therefore, 

 N N
N N

N

X ( 1) A X ( ) B U( )

X( )
Y( ) C

Y( )

k k k

k
k

k

     


 

 
 
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(31) 

Basing on the state space model, state, 
input and output matrices in Eq.11, the 
follow-up outputs will be calculated 
consecutively. 

Current plant information is represented by 

means of 
N

X ( )k , assuming that the new state 
variable matrix is accessible through 
measurement in the sampling time k. 

Future control trajectory is as follows: 

U( )

U( 1)

U( 1)
u

k

k

k n



 

    

 
 
 
 

Having 
N

X ( )k , future state variables are 
predicted for ny number of samples. 

Defining  U 0 ,...,
u y

nk m m n    , the 

future state variables are: 
N

N

N

X ( 1 | )

X ( | )

X ( | )
y

k k

k r

n

k

k k






 

 
 
 
 

where, 
N

X ( | )k r k  is to be the predicted 
state variable in k+r  with present and certain 

information 
N

X ( )k . 
Future state variables have been calculated 

consecutively using the equation shown 
below, 

 

 

 

 

 X 1 X( ) U( )d dk A k B k     
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(32) 

Through Eq.(32) and the predicted state 
variables, the predicted output variables have 
been calculated as follows: 
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(34) 

The predicted variables have been 
formulated through considering the current 

information of state variable 
N

X , and shift the 
sampling times in the future instants of 

U( ) 0,1,2, 1uk m m n     
 

In the following, we define the output 
matrix; its dimensions have been given for a 
“multi-input/multi-output” system. 

tra

2 1

Y( 1 | )

Y( 2 | )

Y( | )
y

yn

k k

k k
Y

k n k









 
 
 
 
 
  

 

 

Therefore, incorporating Eq.33 and 34 into 
one frame, 
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1 2 3
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Or: 

N

X ( )Y k b U       (36) 

Cost Function, which is minimized at any 
sampling time, is a quadratic criterion: 

      tra tra
CF

y u
Y w W Y w U W U       

min max
U U U      (37) 

Where, 
( q) 1

R yn
w

 
  indicates the vector of 

future output references in control state;    
( q) ( q)

R y y

y

n n
W

  
  represents a defined positive 

matrix which allows a confirmation of every 
controlled output and its predictions; 

R u u

u

n n
W


  indicates a defined positive 

matrix, usually diametric, which weighs the 
number of control efforts for inputs, and “q” 
stands for outputs. 

 
7. Simulation Results 

 
To begin simulation, we determine the DFIG 
parameters as shown in Table 1. 
 

Table 1. Generator parameters 

Rs 0.0234 Ω 

Rr 0.0156 Ω 

Lm 0.01678 H 

Lls 0.012587 H 

Llr      0.012587 H 

Vs    580 V 

N.P (pairs of poles) 2 

 
The proposed strategy control has been 

simulated using Matlab/Simulink software.  
  Power control strategy has one time, 

4
 (sec)0.2 10T


  . 
The following figures represent the 

experiments of the simulation.  
The studies have been conducted based on 

the various steps of active and reactive power,  
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the rotor’s constant speed of 222 radians per 
second, in order to test the dynamic response 
of proposed strategy for power control. 
 

 
Fig. 3. Phasor diagram of control by stator 

flux orientation 
 
In Fig.4, the dynamic performance of the 
proposed control strategy has been shown for 
steps of active and reactive power. As seen in 
the results of active and reactive power 
responses, it is to be said that the dynamic  

 response for both powers are very fast. Initial 
reference for active power is −60 kw, and the 
power factor is 0.85. Then, the reference 
active power changes from −60 to −100, and 
power factor from 0.85 to −0.85 in 0.65 
second. Again, the reference power changes 
from −100 to −149 kw; and the power factor 
from −0.85 to 1.0 in 0.9 second. In Fig.5, the 
d and q components have been shown. These 
responses also represent a good tracking 
performance. In Fig.6, three-phase stator 
currents, and in Fig.7, three-phase rotor 
currents have been depicted; these currents 
are sine. Overshoot is very small in the active 
and reactive power responses, in the three-
phase stator currents, and in the three-phase 
rotor currents. Figure 8 represents the rotor 
speed as input in 222 radians per second in a 
constant manner. Figure 9 shows the DC link 
capacitor voltage as 415 V. The desirable 
performance of the control system is based on 
the fact that this system accords with the 
designed parameters. The control system 
certainly has good performance due to the 
compliance of powers with their own 
reference values. 

 

 
Fig. 4. Step test response for active and reactive power in a super-synchronous operation 
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Fig. 5. Step test response for the rotor current’s d & q axes in synchronous reference and a super-synchronous 

operation 
 

 
Fig. 6. Three-phase stator current in stationary reference   
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    Fig. 7. Three-phase rotor current in stationary reference    

 

     
Fig. 8. Rotor speed as input (radian/sec) in stationary reference      
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     Fig. 9. DC link capacitor voltage between two converters in Fig.1  

 
8. Conclusion 
 
In this paper, an MBPC was presented in 
order to control the active and reactive powers 
of a wind turbine-based DFIG using d and q 
components. The MBPC is easily adaptable 
and executable for controlling the DFIG 
power. The predicted outputs have been 
calculated assisting a space-state model of 
DFIG. The control system has been composed 
of the control law which has been extracted 
by means of optimizing Cost Function which 
takes into account the control effort, the 
difference between predicted outputs (active 
and reactive powers), and the reference 
values. Rotor control voltage in the form of a 
receding horizon has been calculated while 
satisfying the state constraints. This control 
method applies the constant switching 
frequency which overcomes the problems of 
common and traditional ‘direct power 
control’, as found in reference [10]. The 
simulation results show the robustness and 
effectiveness of this control method. Future 
research may be conducted based on the 
implementation of a predictive control 
strategy in other renewable sources. For more 
information, refer to references [31–37], 
(previous works of the authors of this paper). 
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Appendix a: Overall System, 
Wind energy conversion system based on DFIG 

 

 
Appendix b: Controller Sub-system 

 

 
 
 
 
 
 


